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TURBULENT BOUNDARY L4YER ON A YIWIZDCONE IN

By Willis H. Braun

A SUPERSONIC STREAM

suMMARY

The momentum integral equations are derived for the boundary layer
on an srbitrary curved surface, using a streamline coordinate system.
Computations of the turbulent boundary layer on a slightly yawed cone are
made for a Prandtl number 0.70, wsll to free-stream temperature ratios

y of 1/2, 1, and 2, and Mach numbers from 1 to 4. Deflection of the fluid
g in the boundary layer from outer streem direction, local friction coeffi-

cient, displacement surface, lift coefficient, and pitching-moment coef-
ficient are presented.

‘+ INTRODUCTION

The flow of a laminsr boundary layer over a cone in a supersonic
u stresm has been well established, not only when the cone is alined with

the free stream (refs. 1 and 2) but also for certain perturbed motions.
More (refs. 3 and 4) has computed the boundary layer on a cone at angle
of attack, and Illingworth (ref. 5] has found the flow when the cone is
spinning. Recently, the lsminar boundary layer for a cone that is both
spinning and at angle of attack has been investigated (refs. 6 and 7).

The corresponding treatment of the turbulent boundary Sayer on a
cone has otiy been begun. Van Driest (ref. 8) and Gazley (ref. 9) have
studied the cone at zero angle of attack. ‘I’heyhave found transforma-
tions relating boundary layers on cones to those on flat plates.
Van Driest’s method represents the turbulent stresses according to the
mixing-length theory, while Gazley uses the momentum-integral equations.

The investigation of the cone at yaw (attack) or in spin is impeded
by the lack of any generalization of the turbulent stress representations
to three-dimensionalboundary layers. Mreover, it appears from experi-
mental measurement (see ref. 10 for review of experimental results) that
the “principle of independence” may not hold for three-dimensional tur-
bulent boundary layers. That is, on a yawed cylindrical surface, the
flow in the ylane normsl to the sxis may not develop independently of~
that along the generators, as in laminsr, incompressible flow. From
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these considerations it appears that a resolution of the equations of
motion along a body coordinate system will not, in generel, lead to a
tractable problem. More appropriate for this case is the integral method
as applied by Mager (ref. n), which follows the development of the
boundary layer along a streamline, assuming that the thickness, skin
friction, and other properties behave nearly as in plane flow.

The following development extends Mager’s use of the integrsl method
to compressible flow over arbitrary curved surfaces. The specific case
of the turbulent boundsry layer on a cone at small angle of yaw is con-
sidered. The forces exerted by the boundery layer on the cone and the
heat transfer to the surface are computed.

A

SYMBOLS

defined in equation (19)

defined in equation (18)

constsnt

frictional drag coefficient

local friction coefficient (defined in eq.

frictional lift coefficient

pitching-moment coefficient

defined in equation (51)

defined in equation (42)

frictional drag force

frictional lift force

determinant of metric

metric coefficients

integral

constant

Y

..L r

u

(12))

defined in equation (40)

—

coefficients
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Mach number on surface of unyawed cone

Mach number on surface of yawed cone

Mach number ahead of shock

pitching moment

index, equation

Prandtl number

pressure

(15)

distance from apex of cone

Stanton number

src length in

temperature

time

ith”direction

velocity component in direction of cone ray

velocity component in i‘h direction

circumferential velocity component

constants defining potential flow

coordinate in streamline system of coordinates

deflection angle a-twall

defined in equation (45]

ratio of specific heats

displacement surface height

boundary-layer thickness

displacement thicknesses, equation (11)

yaw Wgle
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Subscripts:

m

s
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parameter defining pressure in potential flow

cone half-eagle

momentum thicknesses, equation (11)

yaw parameter .—

viscosity

kinematic

p~emeter

density

viscoBity

defining density in ptential flow

viscous stress

sngle about wind

angle about body

mean value

Btream value

wall value

Superscript:

value
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axis

cone
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Consider the boundary layer of thickness 5 on the surface S of
4 sketch (a). The projection of the stream velocity us on the surface

determines the X1 direction. (It is assumed that us is the velocity
a ~tentisl flow would have at the surface.) The direction in the plane
of the surface normal to X1 is designated X2. With the choice of X“
normal to the surface the result is a right-handed orthogonal system.
There can, in general, be a pressure gradient in the X2 direction. The
effect of the pressure gradient is much stronger upon the low-energy
fluid in the boundary layer them upon the outer stresm. Consequently,

U2 does not vanish in the boundsry layer, and the turning of the stream-
lines within the boundary layer is greater than at XO = 5. The angle
of deflection between the outer streamline and the limiting direction of
the streamlines at the surface is denotedby

The element of arc ds in the x-system

(ds)2 = &)@0)2 + g~(#)2

where the g++ are the metric coefficients.

CL.

fs given by

+ @@2)2
Of these,. .

* are functions of X“, xl, X2 determinedly the surface

X“ to be the norma3 distance from S, it is correct to
u With the definition

g= IIgi J = %g22

the equation of continuity becomes (ref. 12)

The momentum equations are (as derived from ref. 12)

5( A2L——‘Uz‘fz+giiaxi )l=i=o
i =

2=0
gzz ‘Jz

In equation (2) u~z is the covariant derivative of the

vector Ui with respect to Xz, and ~ is the stress
pressure.

%’

gn =d g22

s. By choosing

set * ~1.

(1)

0,1,2 (2)

contravariant

tensor excluding

T
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It is more convenient later to have (1) and (2) in terms of the
physical components of the velocities and stresses. The physical com-
ponents are given by

u(i) = & Ui. (3)

Ifgii
‘c(iJ)= ~<

and the arc lengths in the three coordinate directions sre
&

(5)

If, in addition, the results of the appendix are used to choose the
dominant turbulent force terms, equations (1) and (2) become, respectively,

‘e[&++~8uii + pu(i)
r]&h &’”

i=()

and

(6)

u

w

5[ 1
au(l-)+pll(o]u(l)Pu(i) ~

i=o

(7)

.

~ [Pu(i) *] + PU(0,U(2)

d ln~gll

*

a% 02 ap
PU2(U ‘~-= s o

‘m

Outside the boundary layer, equations (7) and (8) become

and

.

(8)

(9)

(10)
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●
Equations (7) and (8) are now to be integrated across the boundary layer
making use of (6), (9), (10), and the folLowing definitions of displace-
ment and momentum thiclmesses:

\

w

.
The result is

% + ’11
+

% ‘ ’21
- (ell + b~)

In deriving (12) and

(SL)

(12)

(13) use has been made of the fact that the metric

*’
coefficients change very little over the thickness 5 of the boundary

w



where in each of equations {14) R is
order 5/R compared with unity have

J
some radius of curvature. Terms of
been neglected in (13).

Equations (12) and (13) govern the development of a compressible
boundary layer on a curved surface on those portions of the surface where
the radius of curvature is very much greater than the boundary-layer
thickness. In this respect the foregoing derivation reseniblesthat of
Timman (ref. 13) for laminar, incompressible boundary layers
trast to that of.Mager (ref. 14) for incompressibleboundary
axisymetric bodies at yaw.

VELOCITYPRCWIIJ?S AND FRICTION COEFFICIENT

in con-
Iayers over

The five boundary-layer thicknesses (11) that arise in the equations
of motion (12} and (13) are functions of the two velocity profiles in
the boundary layer u(l)/~ and u(2}/us, and of the density ratio
PIPS● These three unknown variables along with the friction coefficient
Cf and the deflection angle m give a total of five. ~erefore, hy-
potheses about the boundary-layer characteristics must be added to the
two equations of mtion for the system to be solvable. The only hypoth-
eses available are those suggested by studies of the boundary layers on
flat surfaces where the streamwise pressure gradient is negligible. It
is convenient to write these hypotheses here and to discuss in a sub-
sequent section whether they are appropriate to a cone at yaw.

With respect to the velocity profile in the direction of the free
stream, the customsry assumption of a power law is madej as in plansr
flow,

(15)

The index n is known to vary roughly as the logarithm of the Reynolds
number (ref. 15), although to simplify computations it is usually kept
at a constant value of 7 to 9.

“*

v
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w The component
vanish both at the
in sketch (a). An

9

of crossflow in the boundary layer u(2)/us must “
wall and at the edge of the boundsry layer, as shown
expression which yields a qualitatively correct pro-

file and which is also quantitatively accurate for slow flows (ref. 11)
is

~or the density ratio p~ps there is available under the condition
of negligible pressure gradient the quadratic in the velocity profile
that holds in plane flows (e.g., ref. 8):

Cy
#j P

[

—=> l-r-B u(l) -A2 u(1) 2-1
Ps ~ us ( )]

(17)
us

●

where

(18)

{E)}

The subscript s refers to conditions outside the boundary layer, and

Tw is the (constant) temperature of the wall. The factor Prl/3 ig an
empirical correction (ref. 16).

Again, using a propertyof planar flow, the friction coefficient is
replaced by a generalized Blasius formula “

Cf- eY’4&Y4(%J’4
The subscript m refers to reference conditions in
Eckert (ref. 17) gives for a reference temperature

(20)

the boundary layer.

(21}

The value of K is generally taken as about 0.045 for a flat plate and

-?- (0.045)for a cone alined with the strea.

@
v’ The relations (15) through (21} reduce the umber of dependent vsri-

ables to two, the thickness 5 and the deflection angle a. Stream
Mach nuder and ratio of wall to stream temperate are the parameters.

v Further progress in the solution of the eqyations of motion (12) and (13)
requires knowledge of the stream of a given configuration (i.e., ~).
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STREAM COORDINATE SYSTEM ON A SLIGHTLY YAWED CONE

The coordinate system on the yawed cone is composed of the
potential-flow stresnlines on the surface and their orthogonal trajec-
tories. A comparison is made in figure 1 of the flows on the surface of
an unyawed cone and a yawed cone. Whereas the surface streamlines coin-
cide with the elements of an uny%.wedcone, on a yawed bone they are de-
flected by the circumferentialpressure gradient.

.
The potential flow maybe found for small yaw angles e by use of

the tables of reference 18. (The definition of 6 used here and in
ref. 18 is the negative of that of some treatments.)

In terms of the angle Q about the wind sxis, and to first order
in e, the radial and circumferential components of velocity are given
by

,

U.;+excosq (22)

w = &z sin (p (23)

where X,z,u are coefficients tabulat~d in reference 18 against cone
angle and Mach nuuiber. The velocity u is recognized as the radial
velocit at no yaw (s = O).

7

When making computations it is necesssry
(ref. 3 to replace the values of z
z = -z (tables) -2x/sin 0.

appearing in reference 18 by
At the surface of the cone it Is allowable

to first order in e to replace the angle q by the cone angle $
(ref. 19). Then the path of the streamlines on the surface
is given by

&

s= ZZ
w rsin@#

6

Integration of (24) yields

[

z

1
-%5%7— xsin@-—

; (sin *) Zf(x2) = ~~~~~$ r

where each value of the psrameter X2 is associated with a

of the-cone

(24)

(25)

streamline.
The exponent &/sin @ appearing in (25) is the parameter describing the
perturbation of the system from zero yaw, and is hereinafter denoted as
k:

(26)

“

w

“v

v
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Let the function f(x2) be chosen so that at zero yaw (k= 0) X2 = -COS ~.
* Then

f(xq s- (27)
-x

Cu
b Equations (25) a~d {27) taken together sre an implicit transforma-
2 tion from r,~ to x . Their conibinationyields

X2 = -cos * - sin2* in r‘/m (~im *)-(x/U)sin 8

A0 Equation (28) describes the stresmflineson a
s in the yaw parameter h. The new coordinate
y top of the cone to +1 at the bottom.
&

y:~ed cone to first ordm”

—
The curves orthogonal to the streamlines me

dr cz sin *
rsin~d~=-~+ex ~os~

“ which upon integration yields

X1 = r(l - 1 sin2@~cos *)
.

runs from--l at the

definedby

(29)

On the left of (29), X1 is a parameter associated with the familyof
normal curves or, alternati~ly, a coordinate measured along the stream-
lines. Eqyations {28) and (29) sre the transformation from the unyawed
to the yawed coordinate system.

The inverse transformation is redilyfound to be

r = X1(l - Asin2@*x2) (30)

On the surface,

@s)2 = (dr)2+(r sin @d~)2

= gllG@)2 + @2(&)2 (32)
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Using (30) and (31) in (32), it is found that

= 1- 2X sin%Z X2
ii

gzz - (xlsin @)2
1- (X2)2

(1- z:{ ~sin2@+~ln x1- ~ sin @
ii u

The
required
ta first

.

●

(33)

density and velocity at the edge of the boundary layer are also
in the equation of motion. They are obtained from reference 18
order in X as follows:

and

(34)

.: =U2 +.2.:2(1 - Zx==s
ii

~ ~sin @xZ~
Ps = ;(1 -

F

P~ = ;(1 - ~*@ X2]
P

From (35), (36), and (37), it follows that

‘~=fi2[1+’sin‘(H-:)X!

X2) (35)

(36)

(37)

(39)

In the preceding equations, a bar over a quantity indicates its value at
zero yaw.

With the aid of expressions developed, it is possible to show that,
for a cone at small angle of yaw, the forms hypothesized for the velocity
and density profiles in the preceding section are indeed appropriate.
The substitution of.(16), (33), (34), snd (37) into the equation of
motion (7) gives, upon
and the term of order

neglecting terms of-second order ii u and x
8,

d

.
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The pressure gradient is seen to be negligible, so that the velocity pro-
4 files (15) and (16) are good approximations.

Moreover, replacing u(1) by temperature and z(c)l)by heat flux
over heat capacity in the preceding equation results in the energy equa-
tion. This is the condition necessary for Reynolds’ analo~ between
stress and heat flux to hold. Consequently, the density (or temperature)
profile (17), which is based on Reyuolds’ analogy, canbe properly used
for the cone at small angle of yaw.

SOLUTION OF TEE MOMENTUM INTEGRAL EQUATIONS

The momentum integral equations (12) and (13) are now to be written
for a yawed cone at constant temperature in terms of
thickness 8 and the deflection angle a. In order
necessary to evaluate first the integrals (11) using
It is convenient to specialize at once to n= 7 i.n
and (16) and to make the following definitions:

the boundsxy-layer
to do this it iS
(15) tbkgh (21).
the profiles (15)

J
1

Im,2 =
{md~

o (l+fi~ -12{2)2

1

[

%2X2=-
a2 +52 1+5-12
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Then to first order in X and a, the displacement and momentum thick-
nesses (11) become

.

!.

6;
T 7(17 -—*u— 2114 + 121)

8 Tw ,

=CGN1

921
‘=~~7(18-5 2115 + Iz2)

‘%1 7&7-
[( )

~ &-1).(17-18)—=
5

@+kSh@7~
w PP

- B&2 - 19,2) - 2 J&~2(19,2 - 110,2) x2
u

S~+Asin@R1x2

e22— = Ct(az)
5

.

The integrals 17, 18~ and (17 - 18) appearing in (40) are listed

in the tables of references 20 and 21. The integrals 19 and 110~

which are required to compute 19,2 ad 110,22 may be obtained from

the recurrence relation

Im+l = A (%m + Ire-l- +
A2 )

The combinations of integral-s(I7 - 2114 + 121) ad (I8 - 2115 + 122)

should be computed separately, rather than from the recurrence relation,
to avoid cumulative error.

(40)

*

.
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. The Blasius formula (20)
parameters at zero yaw. If a

may liketise be expressed in terms of stresm
linear viscosity law is used,

(41)

where

(++ 2A-3+2
)

(42)
PPU

●
Introducing the thicknesses (40) and

into the momentum integral equations (12)
in m and X,

the friction coefficient (41)
and (13) gives, to first order

and

.
(44)
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are
In order to solve
expanded in powers

NACA TN 4208
.

(43) and (44), the dependent &riables a and 5 -
of (small) yaw psrameter 1:

tEulua.lx+a#+...

5=50+51N...
}

(45)

Equation (43) yields equations of zero and first order in A, and
(44) yields a first-order equation as follows: 8

2350 60

-+rmY2(#43X1

,-,. ?2 ‘1-”1
X1 sin @ ()ax2 %

(46)

(47)

(48)

Equation (46) is simply the integral equation for the unyawed cone. The
solution of (46) satisfying the condition 5(x1 = O) = O is

%W5F=Y5
Substitution of (49) into (48) ~elds

(49)

(50)
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Then using (49) and (50}, the solution of (47) is found to be.

[(;51 4 9
—sin@F- ‘1

-=55v
)

&sin @-— +&
u %U

(51)

Equations (50) and (51) show that the boundary-layer thiclmess has
its greatest changes at the windward and leewsrd rays of the cone and
that the fluid in the boundsry layer is deflected most in the horizontal
plane (fig. 1).

BOUNDARY-IAYZR EFIZECTS

4

From the results of the
effect of the boundary layer

. on the body.

previous section it is ~ssi.ble to find the
on the outer stream and the forces it exerts

Displacement Surface

Let A(#,x2) designate the distance, in the normal direction from
the body surface, which the ~tential flow is displaced by the boundsry
layer. Moore (ref. 22) has shown that A is determined by

(52)

where the srrows designate vector quantities. In terms of the previously
defined boundary-layer thicknesses (52) becomes

a
z

Equation (53) and

a
PSU8 @ (A - q = ~

the boundary condition at
umvawed cone. the surface A has the value

ps~s -& ~: [53)

the tip show that, on the
of the ususl displacement

d
thickness &. Substitution of (33) through (36), (40), (49~~ (50), ~d
(51) into (5S) yields

. .

(

L1 ~5zN1 LO+%
&= 1 + xx’ $D+—sin@+—=—Lo )9u~14P~+9~ (54)

-- --
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For a positive value of the
cone whose axis is inclined

yaw paremeter
downward from

NACA TN 4208
.

k, A is nearly a circular
that of the body. *

Local Friction Coefficient”

Because Reynolds’ analogy shows that the local friction coefficient
is proportional to the local heat-transfer coefficient, it is desirable
to know the local distribution of stresses on the surface of the cone as

.-

well asthe net forces. Combining (29), (41), (45), (49), and (51) ~
yields the friction coefficient: N

(55)

Using as a measure of heat transfer the Stanton

qw
St =

CP(TWO - Tw)~

where qw is the heat transferred at the wall,

and Two is the insulated wall temperature, then

number,
*

w

Cp is the heat capacity,

St=$cf

Frictional Drag Force

For the net forces on the cone it is convenient to transform the
stresses from the streamline system of coordinates (x-system)to the
body system (r,~,y, fig. 1). The transformationsrequired are
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from which
.

T(p) = Z(ol)[1 + (Y(xZ)]

(

~+Lo
T(ylJ)= AT(O1) sin*; sin @ 1 + 5 14P~ + 9% ) }

The force on an element of area da$ on the cone surface is

+
The net force in thedirection of any unit vector v is

(57)

(58)

M
j If ; is in the direction of the cone axis, it has no V-comEmnent, and

the drag force is
m

rfi

‘D =2cos@sin@ JJ %(yr)r&rd~
00

. The viscous stress appearing in the i.ntegrslis, by (12) and (57},

(59)

The frictional drag coefficient is then

To first order, there is no change in the drag coefficient with yaw.

Comparison with the pressure-drag coefficients of reference 18 re-
ti veals that the pressure forces sre of the order of a hundred times the

frictional.forces.

--
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Frictional Lift Force

Consider the force in the direction of unit vector ; in the plane
of yaw and perpendicular to the axis.

v

KB-—
The components of v are

(vr,v~lvy) = (sin @ cos *,-sin *,cos @ cos *) (61)

Combination of (57), (58), (60), snd (61) yields for the ratio of the
frictional lift force to the frictional drag force

FL= CL -h tan @
FD

%= 2 {[
Fsin@-$D-~sin2@&-

U
sin e~;++)]

(=1+5
~+Lo

+
14Pl + 9R0

)}

(62)
u

Frictional Pitching Moment

Consider the moment of forces about an axis through the cone apex,
normal to the plane of yaw. The stress %(ry) acts through the apex and

so cannot contribute to the moment. The stress ~(~) has a moment arm
r cos 0, and its component in the upward direction is

-sin $ ‘c($y)

The pitching moment is then —

rfi

d= -2 sin 03cos @JJ00 sin VZ(W)r2dr d~

.

w
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Use of equations (57) and (80) results in.

% = FD,~~s @

(

Ro+Lo
= .A; tm @31+5

u 14P~ + 9R0
)

21

(63)

for the frictional pitching moment.

NUMERICAL IImMPLEs

Computationsof the boundary layer on the yawed cone have been made
over a free-stream Mach number range of 1 to 4 to show the effect of cone
angle and temperature ratio. The Frandtl number was taken as 0.7.

The computational procedure is as follows. For a given Mach number

and cone angle, the parameters ;, x, z, gfi, and qfi a?e obtained
from reference 18.* For a given Mach number and temperature ratio, the
integrsls 17 and 18 sre obtained from reference 20 or 21. The in-
tegrsls 19 and 110 sre obtained from 17 and 18 by the recursion

. formula. The combinations of integrsls (17 - 2114 + 121) and

(18 - 2115 + 122) are functions of R (zero yaw Mach number on the cone

surface) and the temperature ratio TfTw. They are plotted in figure 2,
which shows that they are nearly linear in fi2. ltromthese parameters
and integrals, the quantities ~, L1~ ~~ R1~ P1~ and N1 (eq. (40))

may be obtained, and with them the coefficients of the previous section.

In figure 3 is shown the parsmeter (from eq. (54))

axis from
ratio on a
constant tem-
of a laminar

which determines the deflection of the displacement surface
the cone axis. Figure 3(a) shows the effect of temperature
20° cone, and figure 3(b) shows the effect of cone angle at
perature ratio. A comparison with the displacement surface
adiabatic boundary layer (ref. 3) is made. The parameter is of the same
order of magnitude for the two boundary layers over the Mach number range

2 considered, although slightly higher for the lsminar flow. The displace-
ment surface deflection is slightly greater for low wsll temperatures
because of the increased density in the boundary layer.

L
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The deflection of the inner streamline is determined by the parsm-
eter (eq. (50))

.

.“

Figure 4 shows that the deflection is considerably less in the tudnilent
boundary layer than in the laminar. The fluid in the lsminar layer,
having less kinetic energy, is influenced more by the transverse pressure :

gradient. Figure 4(a) shows the effect of temperat~e ratfo~ and fiWe . N
4(b) shows the effect of cone angle. When the wall temperature is high,
the density in the boundsry layer is lowered, and greater deflection
results.

The change in local skin-friction coefficient 2 with yaw~(ol)/P#s
is determinedly (eq. (35))

Figure 5, a plot of this qusntity, shows that the effect of temperature
ratio is small, whereas the effect of cone angle is appreciable. The
comparison with the laminar flow again reveals that the turbulent bound-
ary layer is less affected by yaw.

The viscous lift coefficient (eq. (62)) is shown in figure 6. There
are two types of forces contributing to this coefficient. The viscous
shear is greater on the top of the yawed cone than on the bottom, re-
sulting in a lift force in the direction of yaw. The circumferential
forces always give a lift force opposing yaw. For smell-angle cones the
drag forces grow relatively larger with Mach number until finally the
resultant lift is in the direction of yaw.

The pitching moment is shown in figure 7. It is proportional to
that part of the lift caused by the circumferentialforces. It is
slightly higher for the higher ratios Twfl because of the greater de-
flection of the low-density fluid in the boundary layer.

CONCLUDING REMARK8

The over-all picture givenby the foregoing computations is that the
turbulent boundary layer on the yawed cone behaves qualitatively like the
laminsr layer, but the relative magnitude of the effect is slways less.

w

Thus, the deflection of the fluid in the boundary layerj the frictional
lift, and the frictional pitching are relatively smaller because of the 4
higher shear stresses.
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The assumptions entering into the formulation of the problem should
.

be kept.in mind in interpreting the results. The assumption that the
skin-friction law for plane flow holds for flows with slightly curved
streamlines should not be far from the true picture. The choice of a
power-law profile for the velocity component in direction of the outer
stresm is considered reasonable because the pressure gradients are smsll.
But the selection of the proper profile for the transverse component is
less certain and at the same time critical.,for it is this profile that
determines the three-dimensional effects. The results presented here
give magnitudes and general trends, but are not necessarily quantitatively
accurate.

The analysis gives no information about the separation of the bound-
sry layer. It is limited to small perturbations, from zero yaw, of the
potential stream; consequently, there sre no strong pressure gradients
to induce separation. Any form factor constructed from ratios of the
boundsry-layer thictiesses varies at most to order k over the cone sur-
face, whereas separation is associated with the growth of a form factor
to some large critical value.

*
Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics

9 Cleveland, Ohio, October 24, 1957
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APPENDIX - SELECTION OF DOMINANT STRESS TERMS
.

The turbulent stresses arise in equation (2) in the c veriant de-
rivative ~i In a plane flow the normal stresses fTO ~ %2 and the

2,2” o’ 1’ 2
shear stresses ‘c”‘cl are known from experimental measurement to be of

1’ 0
the ssme order of magnitude. In three-dimensionalboundary layers, ad-

ditional stresses ~~~~$~~~,~~ arise that may be smaller, but certainly

no larger, than the normsl stresses. G
<N

In the X1 equation of motion the stress terms are

+23+(f322 bx2
(Al) ‘

where it is understood that i is summed from O to 2. me r: me ●

the (%ristoffel symbols: — —

r~=o for l+m+n+l (A2)

Also ,

(M)

(A4)
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Consider first the partial derivatives in (A4). They maybe written.
in terms of the physical com~nents and arc lengths,

*[w’’%3+%i#] (A5)

.

In a boundary layer, the stresses vsry rapidly in the direction normsl
to the surface,but slowly in directions psrallel to it. Thus,

*T ‘“*, while & “d
& “~, where As is a distance,

measured on the surface, over which a stress varies an appreciable part
of its total magnitude. Then,

The Christoffel symbols are composed of terms of the form

.Lz!a.l
-& ‘s

(A6)

(A7)

Consequently,

Thus all terms not involting derivatives of the stresses may be ne~ected.
(The fact that some of the derivatives in the Christoffel symbols are
taken with respect to X“ does not make them large, for the giJ sre

nearly constant through the boundary layer.)

. It is seen that the only
tion of motion is

*

stress term which remains in the & equa-

+~??
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A similar argument
term of importance

1.

2.

3.

4.

5.

6.

7.

8.

9.

shows that in the Xz equation of motion the only
is

— a’20
-+-& ‘0
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